

USDFRC Overview 2016 NAAIC Joint Conference Systems

Forage

Environment

Nutrition

Mark Boggess, Ph.D. July 13, 2016

U.S. Dairy Forage Research Center, USDA Agricultural Research Service

USDA-ARS Research Resources

- Strong partnerships with the University of Wisconsin
- USDFRC Center UW campus
 - 15 SYs, labs, engineering and support staff built in 1980/81
 - Greenhouse row

• Research Farm at Prairie du Sac

- 360 lactating cows built in 1980/81
- 2200 acres, 1400 tilled
- USDA owns land and facilities UW owns cow herd

• Research Facilities at Marshfield/Stratford

- 5 SYs, labs and support staff built in 2008
- 125 lactating cows 550 head of developing heifers
- 700 acres farmed
- UW owns land and cows UW and ARS own facilities

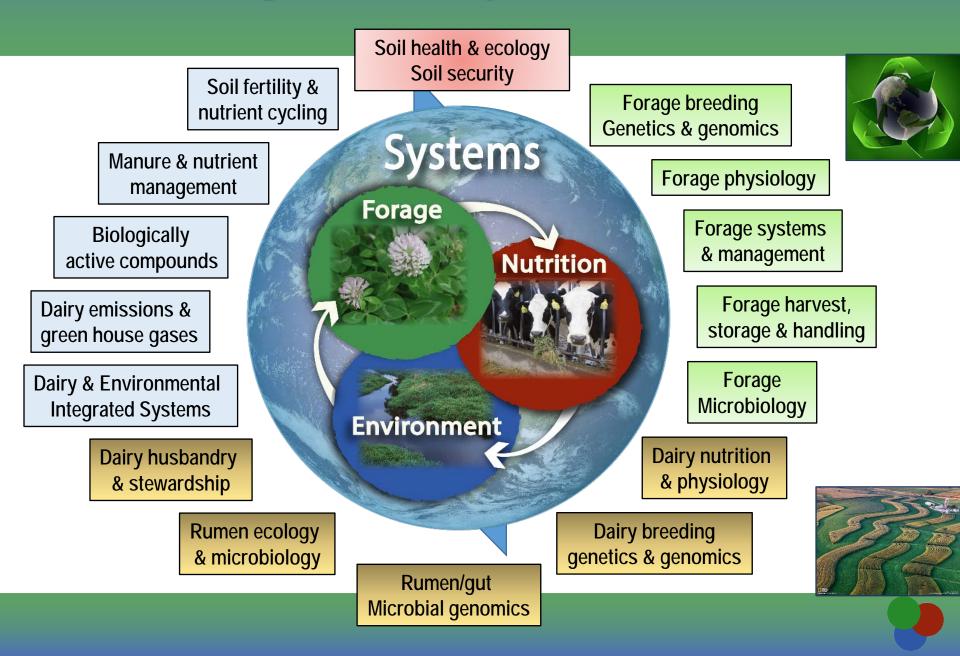
3/24/2017

Research Teams

• Environmental Systems:

- Wayne Coblentz RL Marshfield
- National Program 212 Soil and Water
- 5 scientists

• Dairy Forage:


- Geoff Brink RL
- National Program 101 Food Animal Production
- National Program 215 Pasture Forages and Rangeland Systems
- 7 scientists

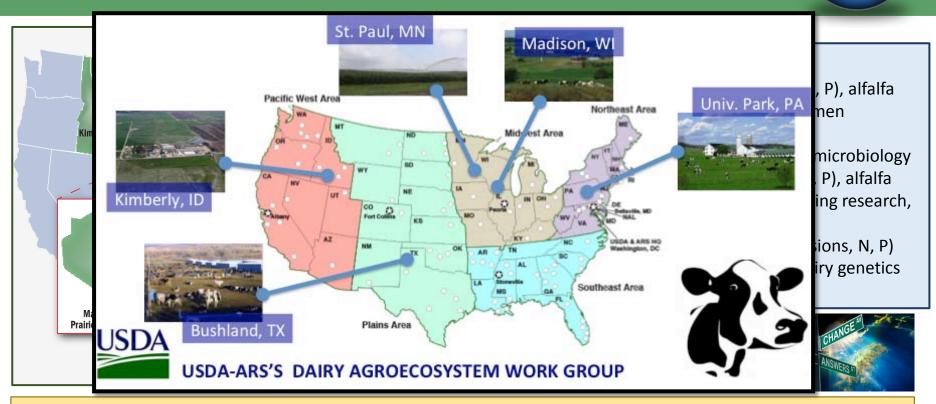
• Cell Wall Biology:

- Ron Hatfield RL
- National Program 101 Food Animal Production
- National Program 215 Pasture Forages and Rangeland Systems
- 8 scientists

USDFRC Integrated Dairy Research:

New Scientific Capacity!

• New Scientists:


- Environmental Engineer Dr. Tucker Burch (March 2016)
- Animal Breeding Dr. Wenli Li (August 2016)
- Growth Physiology interviewing
- Bio-Processing Microbiologist/Forage Preservation interviewing
- Current Vacancies:
 - Soil Scientist (vice-Jokela) recruiting
- Two more scientist retirements in FY17

• Other positions:

- Resource Ecologist Prairie du Sac recruiting
 - Focus on balancing production and farm ecology
 - Development of a "Discovery Farm" model
 - Partner with UW, DNR, NRCS, local interests, etc.

ARS Program Partners

DAWG – Dairy Agroecosystem Working Group:

- Focus on understanding integrated crop/forage/dairy systems with specific focus on environmental sustainability.
- Includes strategic partners across the US membership is expanding.
- Developing 6 focus area teams.

USDFRC Research Priorities

- Focus on highly integrated dairy system optimized on a landscape scale (watershed, county, state, etc.)
- Understanding GEMS factors: Genetics x Environment x Management x Socio-economic
 - Extraordinary complexity relationships and interactions
 - Focus on optimization/efficiency, resource balance, and ecosystem services
 - Building highly effective teams extensive partnerships

• Research Priorities:

- Forage and cropping systems
 - Improved perennial crop systems and alternatives
 - Improved annual crop systems and alternatives
 - Polyphenol oxidase and condensed tannin systems
 - Alternative forages
 - Cover crop systems
- Dairy nutrition Feed/nutrient utilization efficiency
 - Nutritional physiology energy and protein utilization efficiency
 - Rumen and gut microbial communities and systems
 - Improved/adapted genetics for production traits
 - Metabolic size and production efficiencies
- Environmental sustainability
 - Soil health and resiliency
 - C, N and P cycling water quality
 - Reactive N in dairy systems modeling
 - Manure management and soil organic matter
 - Pathogens and biologically active compounds

3/24/2017

Dairy Forage Research Project 5-year project – renewed in FY18

• Project Title:

Redesigning Forage Genetics, Management, and Harvesting for Efficiency, Profit, and Sustainability in Dairy and Bioenergy Production Systems

- Investigators
 - Mike Casler lead scientist, Plant Geneticist
 - Heathcliffe Riday Plant Geneticist
 - Geoff Brink Agronomist
 - John Grabber Agronomist

The objectives of this project include:

- Improved grazing & harvested forage, and improved N application management guidelines for temperate grass-legume pastures.
- Improved forage establishment, harvest management, and storage methods to reduce N inputs, increase profitability, increase dry matter, improve the energy density, and mitigate the effects of rainfall on ensiling, storage, and feeding characteristics of silages.
- Improved pasture grass and legume production systems.
- Improved profitability, conversion efficiency, & adaptability to climatic variation in forage and bioenergy crops.
- Improved dairy industry production capacity and environmental sustainability

Dairy Forage Research Project 5-year project – renewed in FY18

• Project Title:

Removing Limitations to the Efficient Utilization of Alfalfa and Other Forages in Dairy Production, New Bio-Products, and Bioenergy

- Investigators
 - Ron Hatfield lead scientist, Plant Physiologist
 - Michael Sullivan Molecular Geneticist
 - Wayne Zeller Chemist
 - Vacancy Bio-processing microbiologist/engineer

- Improved forage digestibility and energy conversion in dairy rations to increase profitability, improve animal welfare and reduce manure production.
- Reduced N waste in the environment by reducing protein loss during the postharvest storage & livestock consumption of alfalfa & other forages.
- Develop novel alfalfa harvesting and management technologies that increase forage biomass quality and quantity and increase nutrient availability.

USDFRC Research Examples

• Forages:

- Forage quality/digestibility
- Forage grass and legume breeding Meadow fescue and red clover
- Switchgrass breeding biofuel production
- Cover crops interseeding alfalfa into corn silage
- Dry and ensiled forage management and preservation

Dairy Science

- Protein and energy utilization efficiency (MUN)
- Alternative feeds/forages canola meal, cranberry meal
- Rumen and gut microbial systems effects on feed efficiency
- Metabolic size and heifer development

Environmental Systems

- Reactive nitrogen fate and tradeoffs in integrated systems
- Spray irrigation guidelines/pathogen fate analyses
- Manure application management
- Cover crop systems fall forage options and manure application

Next Generation Research

Research Program Evolution

Connecting the Dots! Empowering communication and integration ...

- Focus on understanding integrated dairy systems on a landscape scale.
- How do you empower this understanding?
 - Build a vision for the future?
 - Understand complex relationships and interactions?
 - Understand the tradeoffs and bottlenecks?
 - Prioritize current and future research?
- Developed 4 Research " Mission Area" Communities at the USDFRC (MAC):
 - Dairy Forage
 - Dairy Nutrition
 - Dairy Environment
 - Dairy Systems
 - Each MAC has a unique Mission Statement

Connecting the Dots! Empowering communication and integration ...

- MACs meet twice a year Spring and Fall everyone is welcome!
- Open moderated discussions focused on aspects of integrated dairy systems,
 - i.e., implications for climate change, forage evolution, landscape scale perspectives, population growth, etc.
 - Moderated by ARS leadership and/or industry experts
 - Open to any and all dairy or forage industry stakeholders
 - Topics are visionary and futuristic, but focused on integrated dairy and forage systems

• Goals are:

- Develop and empower leadership
- Improve program communication, networks, and collaboration
- Develop a better understanding and appreciation for the future of dairy and forage production
- Better identify research priorities and research opportunity
- Develop better overall programs and projects more relevant, with more impact

compassion formative character hope persevere competent flexible clarity imaginative courage effective patience l e a d e r s h i p faithful empathetic innovative curious competitive diverse humility social sacrifice ethical global vision discerning

3/24/2017

Example – Visioning Research

Example of System Optimization Landscape Scale

- Project for Dairy 2
 - Improved version of this cow wond record 72,0
 - Concerns: narrov
 - Cow is not "adap
 - Exploring alterna
- Optimization bas
 - Must meet comp
 - Soil quality/secu
 - Dairy manageme
 - Genetic selection
 - Environment/cli
 - Economic and re
 - Rumen/gut micr

Breaking News! New World Record!

w in 2050.... wond record 72,000 pound lactation? less, extreme size, etc.

focus on metabolic size.

not max yield.

ges, etc. tes, health, well-being, etc. and animal. growing season, extremes, etc. lability, air/water quality, etc. t specs, rations, health, etc.

• Cow may will vary from region to region and even farm to farm.

3/24/2017

An "Optimized" Future Cow?

- Not business as usual? No single cow for all production systems
- Focus on matching the cow to an adapted production system
- Start with a base genetic package region/climate, market specs, etc.

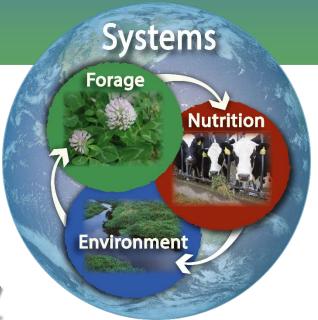
• Edit genetic lines and mass produce

- Specific edits for health, milk components, parasites, heat stress, forage/feed base, housing system, management, behavior, etc.
- Optimized rumen and gut microbial systems
- Mass reproduce similar/identical cows to standardize optimal performance and consistency

• Challenges:

- Maintaining genetic progress across populations (GEMS)
- Understanding very complex relationships GEMS
- Identifying uniquely valuable genotypes/phenotypes finding & qualifying the genes
- Understanding the role, value and potential power of microbial systems gut, rumen, health, other?

USDFRC Research Summary


- Highly integrated and multi-disciplinary research programs focused on systems and complex relationships
- Striving to understand the future research needs for integrated dairy and forage systems on a landscape scale.
- Leveraging the unique USDFRC orientation and capacity.
- Leveraging extraordinary partnerships with UW and others.

QUESTIONS?

Mark Boggess, Ph.D. Director, USDFRC <u>mark.boggess@ars.usda.gov</u> 608-890-0082

U.S. Dairy Forage Research Center www.ars.usda.gov/mwa/madison/dfrc